Left Termination of the query pattern fold(b,b,f) w.r.t. the given Prolog program could successfully be proven:
↳ PROLOG
↳ PrologToPiTRSProof
fold3(X, .2(Y, Ys), Z) :- myop3(X, Y, V), fold3(V, Ys, Z).
fold3(X, {}0, X).
myop3(a0, b0, c0).
With regard to the inferred argument filtering the predicates were used in the following modes:
fold3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_3_in_gga3(X, ._22(Y, Ys), Z) -> if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
fold_3_in_gga3(X, []_0, X) -> fold_3_out_gga3(X, []_0, X)
if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_out_gga3(V, Ys, Z)) -> fold_3_out_gga3(X, ._22(Y, Ys), Z)
The argument filtering Pi contains the following mapping:
fold_3_in_gga3(x1, x2, x3) = fold_3_in_gga2(x1, x2)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
a_0 = a_0
b_0 = b_0
c_0 = c_0
if_fold_3_in_1_gga5(x1, x2, x3, x4, x5) = if_fold_3_in_1_gga2(x3, x5)
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
if_fold_3_in_2_gga6(x1, x2, x3, x4, x5, x6) = if_fold_3_in_2_gga1(x6)
fold_3_out_gga3(x1, x2, x3) = fold_3_out_gga1(x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_3_in_gga3(X, ._22(Y, Ys), Z) -> if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
fold_3_in_gga3(X, []_0, X) -> fold_3_out_gga3(X, []_0, X)
if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_out_gga3(V, Ys, Z)) -> fold_3_out_gga3(X, ._22(Y, Ys), Z)
The argument filtering Pi contains the following mapping:
fold_3_in_gga3(x1, x2, x3) = fold_3_in_gga2(x1, x2)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
a_0 = a_0
b_0 = b_0
c_0 = c_0
if_fold_3_in_1_gga5(x1, x2, x3, x4, x5) = if_fold_3_in_1_gga2(x3, x5)
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
if_fold_3_in_2_gga6(x1, x2, x3, x4, x5, x6) = if_fold_3_in_2_gga1(x6)
fold_3_out_gga3(x1, x2, x3) = fold_3_out_gga1(x3)
Pi DP problem:
The TRS P consists of the following rules:
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> MYOP_3_IN_GGA3(X, Y, V)
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> IF_FOLD_3_IN_2_GGA6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> FOLD_3_IN_GGA3(V, Ys, Z)
The TRS R consists of the following rules:
fold_3_in_gga3(X, ._22(Y, Ys), Z) -> if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
fold_3_in_gga3(X, []_0, X) -> fold_3_out_gga3(X, []_0, X)
if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_out_gga3(V, Ys, Z)) -> fold_3_out_gga3(X, ._22(Y, Ys), Z)
The argument filtering Pi contains the following mapping:
fold_3_in_gga3(x1, x2, x3) = fold_3_in_gga2(x1, x2)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
a_0 = a_0
b_0 = b_0
c_0 = c_0
if_fold_3_in_1_gga5(x1, x2, x3, x4, x5) = if_fold_3_in_1_gga2(x3, x5)
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
if_fold_3_in_2_gga6(x1, x2, x3, x4, x5, x6) = if_fold_3_in_2_gga1(x6)
fold_3_out_gga3(x1, x2, x3) = fold_3_out_gga1(x3)
FOLD_3_IN_GGA3(x1, x2, x3) = FOLD_3_IN_GGA2(x1, x2)
IF_FOLD_3_IN_1_GGA5(x1, x2, x3, x4, x5) = IF_FOLD_3_IN_1_GGA2(x3, x5)
IF_FOLD_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6) = IF_FOLD_3_IN_2_GGA1(x6)
MYOP_3_IN_GGA3(x1, x2, x3) = MYOP_3_IN_GGA2(x1, x2)
We have to consider all (P,R,Pi)-chains
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> MYOP_3_IN_GGA3(X, Y, V)
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> IF_FOLD_3_IN_2_GGA6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> FOLD_3_IN_GGA3(V, Ys, Z)
The TRS R consists of the following rules:
fold_3_in_gga3(X, ._22(Y, Ys), Z) -> if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
fold_3_in_gga3(X, []_0, X) -> fold_3_out_gga3(X, []_0, X)
if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_out_gga3(V, Ys, Z)) -> fold_3_out_gga3(X, ._22(Y, Ys), Z)
The argument filtering Pi contains the following mapping:
fold_3_in_gga3(x1, x2, x3) = fold_3_in_gga2(x1, x2)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
a_0 = a_0
b_0 = b_0
c_0 = c_0
if_fold_3_in_1_gga5(x1, x2, x3, x4, x5) = if_fold_3_in_1_gga2(x3, x5)
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
if_fold_3_in_2_gga6(x1, x2, x3, x4, x5, x6) = if_fold_3_in_2_gga1(x6)
fold_3_out_gga3(x1, x2, x3) = fold_3_out_gga1(x3)
FOLD_3_IN_GGA3(x1, x2, x3) = FOLD_3_IN_GGA2(x1, x2)
IF_FOLD_3_IN_1_GGA5(x1, x2, x3, x4, x5) = IF_FOLD_3_IN_1_GGA2(x3, x5)
IF_FOLD_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6) = IF_FOLD_3_IN_2_GGA1(x6)
MYOP_3_IN_GGA3(x1, x2, x3) = MYOP_3_IN_GGA2(x1, x2)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> FOLD_3_IN_GGA3(V, Ys, Z)
The TRS R consists of the following rules:
fold_3_in_gga3(X, ._22(Y, Ys), Z) -> if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
if_fold_3_in_1_gga5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_in_gga3(V, Ys, Z))
fold_3_in_gga3(X, []_0, X) -> fold_3_out_gga3(X, []_0, X)
if_fold_3_in_2_gga6(X, Y, Ys, Z, V, fold_3_out_gga3(V, Ys, Z)) -> fold_3_out_gga3(X, ._22(Y, Ys), Z)
The argument filtering Pi contains the following mapping:
fold_3_in_gga3(x1, x2, x3) = fold_3_in_gga2(x1, x2)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
a_0 = a_0
b_0 = b_0
c_0 = c_0
if_fold_3_in_1_gga5(x1, x2, x3, x4, x5) = if_fold_3_in_1_gga2(x3, x5)
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
if_fold_3_in_2_gga6(x1, x2, x3, x4, x5, x6) = if_fold_3_in_2_gga1(x6)
fold_3_out_gga3(x1, x2, x3) = fold_3_out_gga1(x3)
FOLD_3_IN_GGA3(x1, x2, x3) = FOLD_3_IN_GGA2(x1, x2)
IF_FOLD_3_IN_1_GGA5(x1, x2, x3, x4, x5) = IF_FOLD_3_IN_1_GGA2(x3, x5)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
FOLD_3_IN_GGA3(X, ._22(Y, Ys), Z) -> IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_in_gga3(X, Y, V))
IF_FOLD_3_IN_1_GGA5(X, Y, Ys, Z, myop_3_out_gga3(X, Y, V)) -> FOLD_3_IN_GGA3(V, Ys, Z)
The TRS R consists of the following rules:
myop_3_in_gga3(a_0, b_0, c_0) -> myop_3_out_gga3(a_0, b_0, c_0)
The argument filtering Pi contains the following mapping:
._22(x1, x2) = ._22(x1, x2)
a_0 = a_0
b_0 = b_0
c_0 = c_0
myop_3_in_gga3(x1, x2, x3) = myop_3_in_gga2(x1, x2)
myop_3_out_gga3(x1, x2, x3) = myop_3_out_gga1(x3)
FOLD_3_IN_GGA3(x1, x2, x3) = FOLD_3_IN_GGA2(x1, x2)
IF_FOLD_3_IN_1_GGA5(x1, x2, x3, x4, x5) = IF_FOLD_3_IN_1_GGA2(x3, x5)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
FOLD_3_IN_GGA2(X, ._22(Y, Ys)) -> IF_FOLD_3_IN_1_GGA2(Ys, myop_3_in_gga2(X, Y))
IF_FOLD_3_IN_1_GGA2(Ys, myop_3_out_gga1(V)) -> FOLD_3_IN_GGA2(V, Ys)
The TRS R consists of the following rules:
myop_3_in_gga2(a_0, b_0) -> myop_3_out_gga1(c_0)
The set Q consists of the following terms:
myop_3_in_gga2(x0, x1)
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- IF_FOLD_3_IN_1_GGA2(Ys, myop_3_out_gga1(V)) -> FOLD_3_IN_GGA2(V, Ys)
The graph contains the following edges 2 > 1, 1 >= 2
- FOLD_3_IN_GGA2(X, ._22(Y, Ys)) -> IF_FOLD_3_IN_1_GGA2(Ys, myop_3_in_gga2(X, Y))
The graph contains the following edges 2 > 1